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The Value of Money: Theory and Practice 

 

by Cesare A. Galtieri 

 

 

 

The problem of “normalizing” the value of economic data expressed in 

money units, in order to take into account the changing value of money, is an 

old one. It is surprising that a “good” solution is still to be found, although a 

number of  “accepted” ones are used today in a variety of contexts. We 

propose to investigate here an approach that would appear to show a 

number of desirable characteristics. We will introduce the theory and later 

apply it to a specific interesting case. 

 

 

 

The “value of money” is the relative purchasing power of the unit of money, i.e. the ability 

of the specified unit of money to purchase goods and services at a given time it  relative to 

its ability to do so at some other time jt . If there is a single commodity, quite clearly the 

value of money at it relative to its value at time jt is determined straightforwardly by the 

ratio of the prices at the two different times. However, as soon as we have to deal with more 

than one commodity, the problem arises of how to “combine” the various prices into an 

overall measure. This implies obviously that the “value of money” can only be stated 

relative to a specific set of commodities. There has been considerable theoretical work on 

the issue, but the practical implementation of many ideas appears to have been lagging. W. 

E. Diewert and A. O. Nakamura (1993) provide a comprehensive review of the issue and 

an extensive bibliography. 

 

 

I. Overview of the Current Situation 

 

We will not even remotely attempt to review the current state of the theory and practice, but 

we will focus on a few specific issues. In all that follows we assume that for any given time 

interval it there is an average price, imp  for each commodity, m, and that the price is 

predetermined. In other words, we will not investigate in any way the factors that may affect 

the price of any commodity. We will only be concerned with the effect that the varying 

prices have on the purchasing power of the money unit at any given time. We assume that 

all transactions for each commodity during a given time interval occur at the average price 

for that interval. We will denote by imq the quantity of each commodity purchased at time it . 

A methodology that has received considerable attention from both the theoretical and 

practical point of view is the one based on Fisher ”ideal” price indexes. Diewert (1987) 
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provides a complete review from both the historical and theoretical points of view. The 

Fisher price index for time it  relative to time jt , ( , )F i j  is defined as 

 

(1)     ( , ) ( , ) ( , )F i j L i j P i j         

 

where  

(2)          ( , )
im jm
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is the Laspeyres price index and 

(3)    ( , )
im im
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is the Paasche price index. There has been considerable attention paid in the literature to 

the fact that the Fisher price index satisfies a number of a priori “tests” that have been put 

forth by a number of people, supposedly characterizing what a “good” index should do. 

Unfortunately, the Fisher price index fails to satisfy a number of other tests, both theoretical 

and pragmatical. In general the Fisher index does not satisfy the relation 

 

(4)    ( , ) ( , ) ( , )F i j F i k F k j  

 

for arbitrary i, j and k. In other words it does not have the transitivity property (that in some 

economics literature has been sometimes referred to as the “circularity property”). This 

could be “fixed” by selecting a specific time interval, 0t as the reference time interval and 

define the relative Fisher price index, ( , )rF i j  as  

 

(5)    ( , ) ( ,0) / ( ,0)rF i j F i F j . 

 

However, because of lack of the transitivity property, the results would actually depend on 

what time interval would be selected as reference, making the whole process essentially 

meaningless. In addition, the Fisher price index has a conceptual difficulty in handling 

“new” commodities or “obsolete” commodities. If a commodity appears in the set of 

commodities for some time interval, it , but not for another time interval, jt , it is not possible 

to compute the value of the Fisher index for those times since there is no price associated 

with the commodity at the time it is absent. The Fisher index is also inadequate in the way it 

handles the issue of commodity substitution associated with the drastic change in the 

relative prices of some commodities. An example will clarify the situation. Let there be only 

two commodities and let the prices and quantities for two time intervals 1t  and 2t be 
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(6)    
11 12 11 121;     1;     =1;    =1;  p p q q   

(7)    
21 22 21 221;     10000;     =2;    =0;  p p q q   

 

The corresponding value of the Fisher price index is 

 

(8)    
10001 2

(2,1) 70.7
2 2

F


 


 

 

indicating that the “average price level” for 
2t relative to 

1t  is seventy times higher, a result 

that does not appear acceptable (although what the “right” result “ought” to be is by no 

means obvious). The problems of the “missing commodity” and of drastic changes in prices 

are obviously more likely to occur the further the time intervals are separated in time, 

therefore making the choice of a fixed reference time interval less palatable in the context of 

a long time series.  

 

In order to deal with this problem the notion of the Fisher chain price indexes has been 

introduced. There are two assumptions on which the idea is based, namely: 

 

1. whenever a “new” commodity appears, at its first appearance it normally has a low 

quantity value associated with it and therefore it represents a small portion of the 

overall total purchasing value of all commodities (a symmetric argument exists for an 

“obsolete” commodity); 

2. price changes occur gradually, so that the difference in relative commodity prices is 

never very large for time intervals closely spaced in real time. 

 

We will refer to the Fisher price index defined in (1) as the Fisher standard price index. In 

the context of a series of time intervals, it , with i=1,2,….,N, we define the Fisher chain 

price index, 

relative to a pre-designated time interval jt , ( , )cF i j , recursively as follows: 

 

(9)     ( , ) 1cF j j   

(10)   ( , ) ( , 1) ( 1, )c cF j k j F j k j k F j k j        

(11)   ( , ) ( , 1) ( 1, )c cF j k j F j k j k F j k j        

 

for 1k  .This implies that the Fisher standard price index needs only to be evaluated for 

consecutive time periods. If there is a “missing” commodity, we can deal with the problem 

by limiting the evaluation of the base index only to those commodities that are in common. 

In view of assumption 1, this will produce a negligible distortion. The Fisher chain index 

satisfies the transitivity property, i.e. 

 

(12)     ( , ) ( , ) ,c c cF i k F i j F j k  
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How good is the new procedure at dealing with rapidly changing prices? Consider again the 

previous numerical example and assume that there are three intervening time periods, with 

the overall picture being as follows: 

 

(13)   
11 12 11 121;     1;     =1;    =1;  p p q q   

(14)   21 22 21 221;     10;     =1.5;    =0.05;  p p q q   

(15)   31 32 31 321;     100;     =1.8;    =0.002;  p p q q   

(16)   
41 42 41 421;     1000;     =1.9;    =0.0001;  p p q q   

(17)   51 52 51 521;     10000;     =2;    =0;  p p q q   

 

We have 

 

(18)  (2,1) 2.66;     (3,2) 1.89;     (4,3) 1.41;     (5,4) 1.20;     F F F F     

(19)    (5,1) 8.51;          (5,1) 70.7cF F   

 

showing that the new procedure certainly helps in reducing the value of the price index for 

the extreme time points to a more reasonable value. However, the change appears to be 

one of degree, since the resulting value of (5,1)cF still appears to be “abnormally high”. 

 

There is, however, a major conceptual problem with the Fisher chain price indexes. Assume 

that at times it and jt  the prices for all the commodities are identical. If it and jt are 

consecutive, (i.e. i = j + 1), we have that  

 

(20)      ( , ) 1cF i j   

 

as it should be. However, if there is exactly one intermediate point, (i.e. i = j + 2), equation (20) 

will not hold in general unless also all of the quantities are the same for the two time intervals. If 

there are two or more intermediate points, (i.e. ;   3i j k k   ), then equation (20) will not hold 

in general even if the quantities are also the same. For example, let’s assume that in the previous 

example the values for both prices and quantities at time 5t are the same as for time 1t  . The 

value of  (5,1)cF   will be 0.31, rather than 1! 

 

More generally, ( , )cF i j for 1i j  , will depend on the value of any of the intermediate 

time intervals between it and jt . This means, among other things, that if we keep it and jt  

fixed and change the number of time intervals between them for which we accumulate data 

(e.g. we change from yearly to quarterly data), the value of ( , )cF i j will in general change. 

Such anomalies would appear to be unacceptable. 

 

We have discussed at some length the Fisher price indexes for one primary reason. The 

Bureau of Economic Analysis (BEA) of the US Department of Commerce has the 

responsibility to evaluate the “real” value of the GDP and other related quantities on behalf 
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of the US Government. It has chosen to use the Fisher chain price index methodology as its 

primary methodology (Landefeld (1997)), although  in certain contexts it also occasionally 

refers to the Fisher standard price indexes, relative to selected  years, for short time spans 

around the reference year. We believe that there are better choices and the major intent of 

this paper is to demonstrate one such alternative. 

 

 

II. The Basic Framework 

 

The basic idea of the approach that we will discuss was put forth in 1924 by A. A. Konüs 

(1924). Although the methodology proposed by Konüs has been extensively discussed in 

the literature, it appears not to have been applied in practice, for reasons that we may be 

able to clarify later on.  

 

We will consider the problem from the point of view of a single individual purchaser of 

goods and services. We assume that there are M commodities, with prices imp  at time it  

and for commodity m. We will denote in general a vector of prices by the symbol p and the 

value of the vector at time it  by 
ip . We assume that at each time it  the individual has a 

non-zero budget, ib which the individual will spend on the purchase of a selection of 

quantities of the different available commodities. We will denote by q a general vector of 

commodity quantities. Let imq denote the quantity of commodity m purchased at time it and 

let 
iq denote the vector of quantities at time it . Obviously we must have 

 

(21)     0i im im

m

b p q   

 

with the constraints 

 

(22)    0            for all  and for all imq i m  

 

which, in view of (21), implies that at least one of the imq is strictly greater than zero. More 

succinctly, 

 

(23)     ib  i ip q     

 

(24)     iq 0  

 

where we have used the notation “ x y ” to indicate the scalar product of the vectors x and 

y and the notation “ x 0 ” to indicate that each component of the vector x is non-negative 

and that at least one of its component is strictly greater than zero.  
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We assume that there is a utility function ( )U q that determines for each individual the “level 

of satisfaction” achieved by the individual as a function of the quantity vector q  purchased 

by the individual. We will assume for the time being that the function does not depend 

explicitly on time. We assume that the function ( )U q is a non-negative real valued function 

and that its domain is the set of all vectors q such that q 0 . We will assume that the 

function ( )U q satisfies certain “regularity” properties, namely: 

 

1. the function is everywhere continuous and differentiable with respect to every 

component of q; 

2. for all values of q : 

U



0

q
 

 

i.e. all first order derivatives are non-negative and at least one of them is strictly positive. 

These conditions maybe more stringent than strictly necessary, but this is not an issue, as it 

will become clearer in the following. The utility enjoyed by the purchaser at time it is given 

by 

 

(25)     ( )iu U iq  

 

We assume that at any given time the purchaser attempts to acquire the various 

commodities in quantities such that the function iu is maximized, subject to the conditions  

 

(26)               ib  i i ip q q 0  

 

Define the optimum utility function 
*( , | )U b Up as 

 

(27)    *( , | ) max ( ) : , 0U b U U b   qp q p q q  

 

*( , | )U b Up measures the maximum value of the utility function ( )U q  that can be achieved 

by somebody with a budget b, given the price vector p and according to the utility function 

U. Given the regularity conditions we have assumed, the function 
*( , | )U b Up is strictly 

monotonically increasing with respect to b, for any p. Note that for any positive   

 

(28)    
* *( , | ) ( , | )U b U U b U  p p  

 

i.e. if both the price vector and the budget are multiplied by the same constant, the optimal 

value of the utility function remains invariant. Let’s also define the minimum budget 

function 
*( , | )B u Up as 
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(29)    *( , | ) min : ( ) ,B u U U u   qp p q q q 0  

 

In other words 
*( , | )B u Up represents the minimum value of budget that is required, given 

the price vector p, to purchase a quantity vector q that will achieve the value u for the utility 

function U. Given the regularity conditions that we have assumed, the function 
*( , | )B u Up is 

strictly monotonically increasing with respect to u, for any p. Note that for any positive   

 

(30)    
* *( , | ) ( , | )B u U B u U p p  

 

i.e. if the price vector is multiplied by a positive number, the budget necessary to achieve a 

specific value of the utility function is also multiplied by the same constant. It should be 

obvious that the functions 
*( , | )U b Up and 

*( , | )B u Up are the inverse of each other, i.e.: 

 

(31)    
* *( ( , | ), | )B U b U U bp p  

 

(32)    
* *( ( , , ), | )U B u U U up p  

 

We can define the price index function ( , , | )I u Ux yp p  for the price vector 
xp relative to the 

price vector yp , at the utility level u, as 

 

(33)    

*

*

( , | )
( , , | )

( , | )

B u U
I u U

B u U
 x

x y

y

p
p p

p
 

 

The function ( , , | )I u Ux yp p measures the ratio of the budgets required at the two specified 

price levels to achieve the same value u of the utility function, given an optimal selection of 

the corresponding quantity vectors.  Note that for any 
xp , yp and 

zp we always have  

 

(34)    ( , , | ) ( , , | ) ( , , | )I u U I u U I u Ux y x z z yp p p p p p  

 

i.e. the transitivity property is always satisfied. Note also that  

 

(35)    
1

( , , | )
( , , | )

I u U
I u U

x y

y x

p p
p p

  

 

showing that the defined function satisfies the reciprocity property at a specific level of utility 

value u. Finally we obviously have for all 
xp and for all u that 

 

(36)     ( , , ) 1I u x xp p  
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implying that the value of the index for any two times at which the price vector is the same 

is always identically equal to 1, i.e. that the function ( , , | )I u Ux yp p satisfies the identity 

property. Furthermore, the value of the index function does not depend in any way on the 

times at which the specified price vectors occur, but depends only on the value of those 

price vectors.  

 

We can also define the equivalent budget function ( , , | )eB b Ux yp p as 

 

(37)    
* *( , , | ) ( ( , | ), | )eB b U B U b U Ux y y xp p p p  

 

In other words, the function ( , , | )eB b Ux yp p measures the minimum budget that would be 

required, at the price vector 
xp , to achieve the same level of utility that could be optimally 

obtained with the budget b at the price vector yp , given the utility function U. Notice that in 

general we have no reason to expect that the function ( , , | )eB b Ux yp p  is linear with respect 

to b, for a given pair of price vectors, 
xp  and yp . In other words, in general it will be the 

case that 

 

(38)    ( , , | ) ( , , | )e eB b U B b U x y x yp p p p  

  

We will define also the equivalent relative budget function ( , , | )erB b Ux yp p as 

 

(39)    ( , , | ) ( , , | ) /er eB b U B b U bx y x yp p p p  

 

 Obviously we have  

 

(40)    
*( , , | ) ( , , ( , ) | )erB b U I U b Ux y x y yp p p p p  

 

Consider the case of two time intervals it  and jt , with the corresponding values of the 

budgets and price vectors, ib , 
ip  and jb , jp . Let 

 

(41)    
*( , | )i iu U b U ip  

(42)    
*( , | )j ju U b U jp  

(43)    ( , , | )i iG I u U i jp p  

(44)    ( , , | )j jG I u U i jp p  
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In other words, iG  is the index evaluated at iu , the (optimum) value of the utility at time it

and jG  is the index evaluated at the (optimum) value of the utility function at time jt . In 

general the two indexes will be different, unless it happens that i ju u .  

 

We should note here a clear analogy with the two components of the Fisher standard price 

Index, as discussed in Section I.. The Laspeyres index (that uses the quantities of the “base” 

time period) corresponds to the jG  index, while the Paasche index (that uses the quantities 

of the “target” time period) corresponds to the iG . There is however a fundamental 

conceptual difference. In the case of the Fisher Index, the two components combine the 

prices at one time with the quantities at another. This has a fundamental weakness. If there 

is a drastic change in the price of a specific commodity (relative to the general change in 

price levels), the combination of the quantities purchased at one time at a relatively low 

price, with the high price at the other time, will produce an unreasonable effect, as already 

discussed in the first section. In the case of iG  and jG , the two estimates for the relative 

value of money are based on attempting to achieve different values of the utility function. In 

each case, however, the prices at any one time are used to determine the optimum choice 

of commodity quantities for the different budget level. If there is a drastic increase in the 

relative price level of certain commodities, the optimization procedure will normally keep 

the quantity of those commodities at a lower level (possibly at zero) and will achieve the 

desired value of the utility function through a redistribution of the budget among the other 

commodities. In general there should be no significant distortion.  

 

We could then define an average index  ,G i j as the geometric average of the two indexes 

iG and jG i.e. as 

 

(45)     , i jG i j G G  

 

that could be viewed as a “generalized” analog of the Fisher Index defined in equation (1). 

 

We need here to open a parenthesis and discuss the traditional notion of “price index”. The 

basic traditional bilateral problem has been to find a way of comparing the situation at two 

different times 1t  and 2t , under the assumption that at those times we have observed the 

price levels 
1p , 2p  and the actually purchased quantity vectors 

1q , 2q . It has been typically 

assumed that the “price index” for those two times “ought” to be a function not only of the 

price levels, i.e. of 
1p and 2p , but also of the observed quantity levels, 

1q  and 2q . This is 

typically demonstrated by the definition of the Fisher standard price index, as given in 

equation (1). In the analysis we have pursued so far there has been no reference to the 

quantities actually purchased at any given time. However, we have used indirectly the 

notion of the quantities that ought to have been purchased in order to achieve the minimum 

budget at a given utility level or the maximum utility at a given budget level.  
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Traditionally, in most analyses based on an underlying utility function, it has been assumed 

that the quantities purchased at any given price level would be the ones that actually 

achieved the maximum value of the underlying utility function. We said earlier that we 

assume that the purchaser of goods and services attempts to maximize the utility function, 

not that it actually succeeds. What would stop our purchaser from achieving the desired 

optimization? There are at least two different perspectives.  

 

The first is that in reality the purchaser does not operate in a market of unlimited and 

unconstrained resources. The desire of the purchaser to acquire a certain quantity of a 

certain commodity may be limited by the actual availability of that commodity. Also, it is 

possible that the acquisition of a certain amount of a given commodity may be linked to the 

purchase of some other commodity, therefore constraining the relative ratios in which 

certain commodities may be purchased. An even more important issue is that a purchaser 

does not typically observe all prices before making any single acquisition, a procedure that 

would be required in order to guarantee that the optimum quantity of each commodity is 

actually selected. Finally, the purchaser may make random mistakes. 

 

But the more fundamental issue, from our perspective, is that the assumption of a purchaser 

behavior based on the maximization of a utility function is only a convenient mathematical 

framework. The purpose of the model is to approximate as closely as possible the actual 

observed behavior. No one really believes that a real life purchaser would go around 

measuring all available prices and then would sit down with a computer to determine what 

quantities should be bought. To require an exact match between the values of the actually 

purchased quantities and the values predicted by the model is unnecessary.  

 

 

III. The Basic Model 

 

All of the above is rather straightforward and was presented mainly to establish the 

conceptual and notational framework.. In order to transform the above set of definitions 

into a workable procedure we must choose a specific expression for the function ( )U q . 

Whenever one has to select a specific mathematical model to represent a class of real world 

phenomena it is rather common to proceed in two phases. In the first phase we select a 

class of mathematical models that we believe to be appropriate for the specific phenomena. 

Such class is typically characterized by a vector of parameters. In the second phase we 

proceed to select a specific value of the parameter vector on the basis of observed data. 

 

We assume that the function is ( )U q  of the form 

 

(46) ( ) m m m

m m m

a c q
U

c q



q  

  

where the ma  and mc  are constant parameters associated with each commodity m satisfying 

the conditions 
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(47) 0   and    c 0        for all m ma m   

  

We will use the vector notation “a” and “c” to indicate the vectors whose components are 

the ma  and mc  parameters respectively. Note that the vectors a, c, p and q have all the 

same dimensionality, i.e. the number M of commodities. The function U is obviously 

completely characterized by the pair of vectors, a and c. Note that the function U is 

continuous, differentiable and that for all values of q, 

 

(48)     

2

2
0

( )

m m

m m m

a cU

q c q


 

 
 

 

The function ( )U q achieves its finite maximum of  

 

(49)       m m

m

a c  

 

when the quantities are infinite. Since the maximization of the function ( )U q is unaffected 

by multiplying it by a constant positive factor, we can assume, without any loss of 

generality, that the function U is normalized so that 

 

(50)      1m m

m

a c   

 

or, more concisely, 

 

(51)      1 a c  

 

This implies that when the values of the quantities mq  are infinite, the function U achieves 

its maximum value of 1. What is the “meaning” of the constants ma ’s and mc ’s? The 

maximum contribution to the function ( )U q  that any given commodity m may provide, 

when it is infinite, is obviously m ma c . If m mq c , the contribution of that particular 

commodity to the overall value of the function will be / 2m ma c , i.e. exactly one half of its 

possible maximum. When the value of mq  is small compared with mc , the contribution due 

to commodity m will be approximately m ma q , i.e. the parameter ma  represents the initial 

value of the derivative of ( )U q  with respect to mq , i.e. the initial rate of “desirability” for 

commodity m. 

 

Before we continue we need to discuss the “reasonableness” of the assumptions we just 

made. The idea that the “consumer” behaves so as to maximize some kind of “utility 

function” is obviously an old one. Is our specific choice of function a reasonable one? 
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Strangely enough, it has been common in the economic literature on the subject of price 

indexes to talk about utility functions that are linear with respect to the vector q, i.e. it has 

often been assumed that, for any positive constant   

 

(52)     ( ) )U U  q q  

 

This appears to us to be extremely strange. The most “natural” assumption about a 

“reasonable” utility function would appear to be that the incremental value of increasing the 

value of all quantities by a given amount should be a decreasing function of the value of the 

quantities. By analogy with a different class of economic analysis, it would appear 

reasonable to presume a “law of diminishing utility”, conceptually similar to the well-known 

“law of diminishing returns”. If the “utility” of owning a car is x, it is difficult to believe that 

the “utility” of owning 100 cars is 100x. Our choice of functional class is such that the 

derivative with respect to mq is monotonically decreasing with respect to mq . This is not 

necessarily a strong requirement. It is conceivable that for some commodities the derivative 

with respect to mq could be increasing for “small” values of mq ; however, it would appear 

that for “large” values of mq , the derivative “ought” to be decreasing as mq increases. Our 

choice of function allows for unlimited substitutability, i.e. any commodity can be 

substituted for another in order to achieve a given value of ( )U q . It is quite clear that some 

level of substitutability is a necessary characteristic of any acceptable utility function. It may 

be argued that too much substitutability is not appropriate, since in practice some 

commodities can only be substituted by a restricted set of other commodities. However, we 

believe that there must be some compromise between simplicity and accuracy and that our 

choice is an adequate one for the purpose at hand.  

 

 Let 

(53)    
2( , , ) ( ) m m

m

H b U p q b
 

   
 
q p q  

 

The optimal choice for the mq ’s are the values that satisfy the relations 

 

(54) 
2( , , ) ( )

0m

m m

H b U
p

q q


 
  

 

q p q
 

 

subject to the condition q 0 . This implies that the optimum quantities 
*

mq  must satisfy the 

relations 

 

(55) 

2
2

* 2( )

m m
m

m m

a c
p

c q



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from which we can derive the optimum values of the quantities to be 

 

(56) 
* 1

( , | , ) 1
( )

m
m m

m

a
q b c

b p

 
  

 
p a c  

  

 

where 

 

(57) ( )
m m m

m

m m

m

c a p

b
b c p

 





 

  

 

in order to satisfy the condition  

 

(58)      b p q  

 

However, it may result that the quantities 
* ( , | , )mq b p a c  from equation (56) are negative. 

This obviously violates condition the condition q 0 . The solution is that the quantities of 

such commodities must be set to zero and the corresponding index must be removed from 

the summation of equation (57). Note that, for any positive  we will have 

 

(59)    
* *( , | , ) ( , | , )m mq b q b  p a c p a c  

 

In other words, if all prices changes at the same rate, the value of the quantities will remain 

the same if the budget is also increased by the same factor. By substituting from (56) and 

(57) into (46) we can derive the form of the function 
*( , , )U b p | a c , corresponding to 

definition (27), as 

(60)    

2

*( , | , )

n m m

m

m m

m m m

m

c a p

U b a c
b c p

 
 
  







p a c  

 

However, it should be remembered that all summations in equation (60) must be extended 

only to those commodities m for which equation (56) leads to non-negative values for the 

quantities 
* ( , | , )mq b p a c . We can also formally solve for the function 

*( , | , )B u p a c , 

corresponding to equation (29), as follows 
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(61)    

2

*( , | , )

m m m

m

m m

mm m

m

c a p

B u c p
a c u

 
 
  







p a c  

 

We must remember again that all the summations must be extended only to those 

commodities for which equation (56) provides a non-negative result. Since this depends on 

the value of the budget, b, for which the quantities are estimated, the value of the function 

*( , | )B u Up  must be determined iteratively. In practice, the value given by equation (61), 

when the summations are extended to all commodities, provides a very good initial 

estimate. Typically, for large values of b, which correspond to large values of u, all 

commodities will have non-zero quantity values and equations (60) and (61) can be 

evaluated straightforwardly. However, at the other extreme, for very small values of b, 

which correspond to low values of u, the situation is quite different. For values of b near 

zero, only the commodity with the most favorable relation between initial “desirability” and 

“price” will have a non-zero quantity. This is determined by the factor 

 

(62)      
m

m

a

p
 

 

having the highest value. 

 

Assume that at some time it  we know the values of ib , of the prices vector 
ip and of the 

quantity vector 
iq . Can we solve for a  and c ?  The answer is “yes”, but not uniquely. The 

function ( )U q  is characterized by 2M-1 parameters (since equation (50) removes one 

degree of freedom). However, at each time it  we only have M-1 independent constraints, 

since condition (58) also removes one degree of freedom. If we know the values ib , 
ip , 

iq

and jb , jp , jq for two time intervals it  and jt , we can then “almost” solve for the a and c, 

there being only one degree of freedom left. However, it is not true that we can find a 

solution for any possible combination of the above observed values. There are certain 

combinations that cannot be achieved for any selection of a and c. But finding a “solution” 

for a and c in such a way is not what we will try to do. As we mentioned earlier, we assume 

that the purchaser attempts to maximize the value of the utility function ( )U q , but not that it 

actually achieves it. This means that we do not necessarily assume that the quantity vector 

iq actually acquired by the purchaser at time it actually achieves the optimum value of the 

utility function, as determined by equation (60), for the appropriate value of the purchaser 

budget, ib . What we do assume is that the purchaser selects the quantities of all 

commodities in such a way as to approximate as much as possible the optimal values 

appropriate to its budget and according to its utility function. In order to translate this 

assertion into an evaluation procedure for the parameter vectors, we can define an error 

function ( , )S a c that measures the “error” between the actual value of the quantity vector 
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and its optimal value. There are a number of reasonable choices for such error function. We 

have chosen to use the one defined by equation (63), namely 

 

(63)    
2

*

2
1 1

1
( , ) , | ,

N M

im im m i

i mi

S p q q b
b 

 
      

 
  ia c p a c  

 

where the sum on i are extended over all times it  for which data is available. The function 

( , )S a c essentially measures the difference between the actual quantities purchased and the 

optimum quantities that would have been purchased, with the specified budget and the 

given price vector, if the given utility function would have been applied. The differences are 

weighed according to their percentage contribution to the total budget. Minimizing the 

function ( , )S a c is equivalent to attempt to find the pair of vectors a and c that will define a 

utility function that will determine a selection of quantities to be purchased that is as close as 

possible to those actually purchased by the consumer. 

 

The problem of the actual minimization of the function ( , )S a c is a non-trivial one. The 

complexity of the function is such that there is no obvious way to solve the minimization 

problem algebraically. In any specific case, it is of course possible to solve the problem 

numerically, by a standard gradient procedure. There are, however, a number of practical 

problems. The complexity of the numerical computation to evaluate the value of the 

function ( , )S a c and of its gradient relative to a and c is approximately proportional to
2NM . 

In most interesting cases the value of M may be over 100. This will make the amount of 

computation non trivial. But this is not the most difficult issue. The major problem is that the 

minimization of a function of 2M-1 variables, with M in the hundreds, presents a number of 

pitfalls. A normal gradient procedure will lead to a local minimum, which is a function of the 

choice of the initial starting point. Any attempt to systematically search for a global 

minimum would entail a number of function evaluations of the order of 
(2 1)2 M 

. For M in 

the hundreds, this is impractical. The choice of  “good” starting points and the decision to 

stop searching will have to be based on pragmatic considerations.  

 

 

IV. The Choice of “Reference” Utility Values 

 

Let’s assume that we have chosen a pair of vectors, 
o

a and 
o

c which define our assumed 

utility function. We can now evaluate the price index function ( , , | )I u Ux yp p for any pair of 

price vectors. However, we have to determine at what value u for the utility function we are 

going to make the evaluation, or, if necessary, how we should combine evaluations made at 

different utility levels. In Section II we introduced the two indexes, iG  and jG that would 

appear to be good candidates if we had to compare only two price vectors (the bilateral 

problem). However, our approach must be able to be generalized to the case of an arbitrary 

long sequence of price vectors (the multilateral problem).  
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The importance of the transitivity property for the price indexes can be clearly understood 

when looking at the problem of dealing with N time intervals, it , with i = 1, 2, …., N. 

Without the transitivity property we would have to deal with N(N-1)/2 separate binary 

comparisons (assuming that at least the reciprocity property holds!). If the transitivity 

property holds, we can select an arbitrary time interval, say rt , as the reference time 

interval and then only deal with the N index functions ( , , | )I u Ui rp p . Interestingly enough, 

we could actually select an arbitrary reference price vector, 
rp , even although it may not be 

associated with any time interval. Such generalization, however, appears to be more 

confusing than useful, unless there was some significant justification for a “special” price 

vector. 

 

In order to understand better the dependence on the choice of the value u, at which to 

determine the price index, we will return to our deliberately extreme example of section I. If 

we apply our approach to the situation described by equations (11)-(15) we find that a 

“good” choice for the parameter vectors a and c are 

 

(64)   0.2317,383.0719o
a  

(65)   3.60504,0.00043o
c  
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and that the optimal values of the utility function associated with the five time points are: 

 

(66)  
1 2 3 4 50.4576   0.4466   0.4139   0.3363   0.2980u u u u u      

 

We will choose 1t as our reference time interval.  

 

In Fig 1 we show the value of the price index functions ( )iG u where 

 

(67)        ( ) ( , , | , )iG u I u o o

i 1p p a c  

 

Note that index values are shown on a logarithmic scale in order to demonstrate the large 

differences between the values for small values of u and large values of u.  

 

 

The same basic information is shown in Fig 2 from a different perspective, i.e. as the 

equivalent relative budget functions ( )iB b where 

 

(68)    ( ) ( , , | , )i erB b B b o o

i 1p p a c  
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Both curves show that for low values of u and b (which are related), the price index and the 

relative equivalent budget are very high, but that they both converge toward much lower 

values for higher values of u and b. The two sets of curves clearly show that the “value of 

money” at any given time is not a constant, but a function of the budget of the purchaser.  

 

Let’s now go back to the general case. Can we “fairly” summarize the situation with a single 

price index value? Quite obviously we can define an “average value of money’ in a variety 

of ways. For example, let 

 

(69)     
* *( , | , )i iu U b o o

ip a c  

be the optimal value of the utility function that would have been achieved at time it

according to the assumed choice of parameter vectors 
o

a  and 
o

c . Define the (geometric) 

average utility 
*u as 

 

(70)     
* *

1

N

N
i

i

u u


   

 

We can then define the price index
1( , )G i j as 

 

(71)          
*

1( , ) ( , , | , )G i j I u o o

i jp p a c  

 

The price index 1( , )G i j essentially measures the price index at the utility level that 

corresponds to the geometric average of the utility values that would have been achieved in 

each time period if the budget available at each time period were optimally utilized, 

according to the specified choice of parameter vectors for the utility function.  

 

Another approach is to define the index 2 ( , )G i j as 

 

(72)    
*

2

1

( , ) ( , , | , )
N

N
k

k

G i j I u


 
o o

i jp p a c  

 

In the case of the index 1( , )G i j we have taken the geometric average of the utility values 

and then evaluated the index at that average. In the case of the index 2 ( , )G i j we have 

evaluated the indices for all optimal values of the utility function and then we have taken 

the geometric average of the result. The choice of the geometric average for the index 

2 ( , )G i j is suggested by the fact that in this way the transitivity, reciprocity and identity 

properties will all remain valid. In the case of the index 1( , )G i j this would occur no matter 

what kind of average we would have chosen. The selection of the geometric average for the 

1( , )G i j price index is purely for symmetry with respect to the index 2 ( , )G i j . 
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In addition to some kind of averaging of the data, there is another approach that also merits 

attention. This is to select one fixed value of u. The selection of a predetermined value for u 

has an advantage, namely that the price index values do not have to be reevaluated as new 

data becomes available, for additional time intervals. An interesting choice is to select 

 

(73)      0.5u   

 

that corresponds to half of the maximum value of the utility function. Another interesting 

choice could be to select 

 

(74)      1u   

 

i.e. to measure the price index at the “ultimate’ value of the utility function. In the latter case 

it should be noted that the function 
*( , | , )B u p a c  goes to infinity as u approaches 1. 

However, the value of the ratio defined by equation (33) can be evaluated by standard 

limiting procedure to be 

 

(75)   

2

1lim ( , , | , )
m m xm

m
u

m m ym

m

c a p

I u
c a p



 
 

  
  




x yp p a c  

 

However, the choice of such a limiting case will lead to possibly anomalous results in the 

presence of very large changes in commodity prices. More generally, we can choose an 

arbitrary set of values of u and then perform the geometric averaging of the results, as we 

have done in equation (72). Let 

 

(76)      1 2, ,..., nv v v  

 

be a set of n constants where  

 

(77)    1;      0 1     for all kn v k    

 

We can define the generalized price index function 1 2( , | , ,..., )nG i j v v v as 

 

(78)    1

1

( , | ,..., ) ( , , | , )
n

n
n k

k

G i j v v I v


 
o o

i jp p a c  

 

We will define the following particular choices of indexes: 

 

(79)     
*

1( , ) ( , | )G i j G i j u  

(80)       * * *

2 1 2, ( , | , ,..., )NG i j G i j u u u  
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(81)        3 , , | 0.5G i j G i j  

 

Note that the 1G  and 
2G  indexes correspond to the same indexes defined in equations (71) 

and (72).  

 

If we apply the above choices to our numerical example we will obtain the numbers in 

Table 1 where we have also added the corresponding values of the Fisher standard index 

and Fisher chain index. It is clear that the 
1G  and 

2G  indexes lead to numbers that (at least 

in this example) are almost identical. Since the value of 
*u is approximately 0.39, it is not 

surprising that also the 3G  index (corresponding to 0.5u  ) is very close. The most 

interesting fact is however, that all indexes appear to be much more “reasonable” from an 

intuitive point of view than either the Fisher standard or chain indexes (although the author 

intuition might be biased). 

 

   i =1, j =1 i = 2, j = 1  i =3, j = 1 i = 4, j = 1 i = 5, j = 1 

( , )F i j  1.00 2.66 7.49 22.95 70.71 

( , )cF i j  1.00 2.66 5.03 7.10 8.55 

1( , )G i j  1.00 1.07 1.30 1.85 2.30 

2 ( , )G i j  1.00 1.08 1.31 1.88 2.36 

3( , )G i j  1.00 1.05 1.20 1.61 2.17 

 

Table 1. 

 

 

V. A Real Example 

 

The trivial example we have been using up to now was meant only to demonstrate a 

specific difference between our proposed methodology and the classical Fisher approach. 

We will now look at a real life example in order to have a more valid comparison. 

 

In all of the previous discussion we referred to a single individual purchaser. Unfortunately 

most of the economic data that we have is aggregate data about the overall purchases of all 

of the US residents. In order to be able to use that data in our analysis we will make the 

following simplifying assumptions: 

 

 every US purchaser behaves according to the same utility function; 

 the overall behavior of the US residents as a whole can be evaluated as if each 

resident had exactly the same budget, equal to the average budget obtained by 

dividing the overall budget for the US by the resident population of the US. 

 

This is clearly an oversimplification, but it allows us to analyze some of the available data in 

a simple way. In order to test the approach in a real life situation we decided to apply it to 
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the US data for the period 1950–2010. The data we used is that released by the Bureau of 

Economic Analysis (BEA) of the US Department of Commerce, as of June 24, 2011. More 

precisely, we used the annual BEA Tables labeled “Table 1.5.5 Gross Domestic Product, 

Expanded Detail” and “Table 1.5.4 Price Indexes for Domestic product, Expanded Detail” 

in the format made available by the BEA through their Internet website.  

 

Table 2 

 

1 Motor vehicles and parts 

2 Furnishings and durable household equipment 

3 Recreational goods and vehicles 

4 Other durable goods 

5 Food and beverages purchased for off-premises consumption 

6 Clothing and footwear 

7 Gasoline and other energy goods 

8 Other nondurable goods 

9 Housing and utilities 

10 Health care 

11 Transportation services 

12 Recreation services 

13 Food services and accommodations 

14 Financial services and insurance 

15 Other services 

16 Final consumption expenditures of nonprofit institutions serving households  

17 Private Investments: Structures 

18 Private Investments: Computers and peripheral equipment 

19 Private Investments: Software  

20 Private Investments: Other office equipment 

21 Private Investments: Industrial equipment 

22 Private Investments: Transportation equipment 

23 Private Investments: Other equipment 

24 Private Investments: Residential 

25 Federal Defense Consumption expenditures 

26 Federal Defense Gross investment 

27 Federal Civilian  Consumption expenditures 

28 Federal Civilian Gross investment 

29 State and local Consumption expenditures 

30 State and local Gross investment 

 

These tables provide the current dollar value of a number of line items and the relative price 

of those items with respect to the average of 2005. It is not possible to derive from those 

tables the absolute quantities of the items in question, but only the relative quantities with 

respect to the 2005 average. This is not a major obstacle, since it only changes the units in 

which all quantity variables are expressed, without affecting the substance of the analysis. 
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The tables are expressed in units of billion US dollars, with the precision of a tenth of a 

billion. Because some of the partial aggregate figures were derived from the original (more 

accurate) data, we restated the total so as to match the available resolution. The data from 

the tables were modified to be consistent with our model, which is defined as a “purchaser 

behavior model”. We define the Gross Domestic Activity (GDA) as the Gross Domestic 

Product with the following modifications: 

 

 it adds Imports 

 it subtracts Exports 

 it subtracts any change in inventory 

 

The GDA measures the total amount of money that people have used to purchase goods 

and services (directly or indirectly) either for immediate consumption or to invest in new 

assets. With the above modifications, the table identifies the 30 commodities listed in Table 

2 which we have used in our analysis. As mentioned above, the original price data is given 

relative to the year 2005. For our analysis it is preferable to use the year 1950 as the base 

year. This does not create any problems with either the Fisher chain index or our G indexes. 

However, as stated earlier, the Fisher standard index does depend on what year is used as 

the base year.  
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In Fig.3 we show  

 

 the Fisher standard index using the year 1950 as base;  

 the Fisher standard index using the year 2005 as base, renormalized so as to the set 

the value for 1950 to 1; 

 the Fisher chain index using the year 1950 as base. 

  

The difference between the Fisher standard indexes is quite significant, demonstrating the 

basic weakness of that index. The apparently “anomalous” behavior of the Fisher standard 

indexes is due almost exclusively to the presence of the commodity labeled “Private 

Investment: Computer and Peripheral Equipment”. It is a well-known fact that the price of 

computer units has been going down in current $ terms while at the same time their 

“performance” has been increasing. The BEA has attempted to take this into account, 

according to the methodology normally referred as “hedonic indexes”. Such methodology 

attempts to restate unit prices so as to take into consideration major changes in 

functionality. However, in so doing the BEA has gone overboard, overestimating the 

increased value of such commodity. This author has spent many years in the analysis of 

computer performance and price/performance, therefore he has some expertise in the 

subject. We have therefore restated the relative prices of the given commodity to be more in 

line with reality.  

 

 

Even so, the still great historical improvement in the price/performance of computers and 

peripheral equipment distorts completely the Fisher indexes. Since the index uses the prices 
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at one time in combination with the quantities at any other time, it creates an anomalously 

high evaluation of the index when comparing years at the two extremes of the time period 

in question. 

 

In Fig.4 we show the Fisher chain index together with the 
1G  index of our methodology. 

They show some significant similarity. This in a sense provides a “degree of confirmation” 

for the validity of both methodologies, since they achieve a high degree of mutual 

consistency, while approaching the problem from rather different points of view. 

 

In Fig.5 we show all three of our indexes proposed above. They show remarkable similarity. 

 

 

Our evaluations have been based on the behavior of an average consumer. We know of 

course that consumers at different income levels will behave differently. However, it is not 

unreasonable to presume that all consumers can be characterized by the same utility 

function, with the differences in consumption being determined only by the differences in 

budgets.  

 

In Fig.6 we show the indexes relative to three choices of fixed values of u, namely 

 

(82)    0.3    0.5   0.7u u u    
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They may be assumed to approximately correspond to a relatively “low budget”, “medium 

budget” and “high budget” consumer, since budget and utility values would be positively 

correlated with each other. If we limit ourselves to only look at the two extremes of the time 

period, i.e. the years 1950 and 2010, Fig.7 shows the equivalent budget ratio that would 

have been necessary to obtain in the year 2010 in order to achieve the same level of utility 

(in 2010) achieved by any given budget level in 1950. For the average budget (in 1950) the 

ratio is about 7.3, for a budget equal of one fourth of the average (in 1950), the ratio is 

about 5.2. For a budget equal to 4 times the average (in 1950) the ratio is about 8.4. 

 

 
VI. Time Varying Utility Function 

 

In the previous analysis we have assumed that the utility function is constant over time. 

When the overall time span is significant, this assumption may be questioned. We could 

approach the issue by hypothesizing a specific form of time dependence for the a and c 

vectors. Unfortunately the variety of reasonable options would lead us into a considerable 

level of complexity that may be inappropriate in the present context. 

 

There is however a simple approach that can give us some insight into the issue. Assume we 

have N time intervals, it , with i = 1, 2, …., N. Let r  be an integer, with1 r N  . For each 

value of the index j , 1 j N  , define 

 

(83)    max(0, )Lj j r   

(84)    min( , )Hj j r N   

 

In other words the interval ( , )L Hj j  consists normally of  2 1r   time points, centered around 

the time interval jt , as long as such time points are available. Define the local error function 

 

(85)    
2

*

2
1

1
( , , ) , | ,

H

L

j M

im im m i

i j mi

S j p q q b
b 

 
      

 
  ia c p a c  

 

which only takes into consideration the differences between the actual and optimal values of 

the quantity vectors for a limited number of time intervals, centered on the selected time 

interval. Define the locally optimal vectors       and    j jo o
a b as those parameter vectors 

that minimize the function ( , , )S j a c , subject to the constraint 

 

(86)        * , | ,jb j j o o

j j jq q p a c  

 

i.e. subject to the constraint that for the specified index j the values of the actual quantity 

vector and of the optimal quantity vector are exactly the same. In other words, the utility 



27 

 

function  | ( ), ( )U j jo o
q a c is biased to match the actual purchasing behavior at time jt , while 

minimizing the differences for the errors in neighboring time intervals. Let 

 

(87)    
* *( ) ( , | ( ), ( ))i iu j U b j j o o

ip a c  

 

and 

 

(88)        *

1

N

N
i

i

u j u j


   

 

We can then define the analog indexes to the 3 introduced in equations (79) - (81), i.e. 

 

(89)      *

1 , | , ( , , | ( ), ( ))G i j k r I u k k k o o

i jp p a c  

 

(90)    *

2

1

( , | , ) ( , , | ( ), ( ))
N

N
s

s

G i j k r I u k k k


 
o o

i jp p a c  

 

(91)    3 , | , ( , ,0.5 | ( ), ( ))G i j k r I k k o o

i jp p a c  

 

as the locally optimal price indexes relative to the time interval k.  

 

We can apply the proposed approach to the example discussed in the previous section. We 

selected  

 

(92)           10r   

 

for our analysis.  

 

In order to make the figures somewhat more readable, we only show in Fig.8 the 3G indexes 

for the years 1950, 1960, 1970,….. 2000, 2010. There is a noticeable systematic difference, 

with the utility functions optimized for later years indicating a higher rate of inflation. In this 

study we are concentrating on the methodology, so we will not attempt to analyze the 

reasons for the trend. 

 

We can combine the locally optimal indexes into overall indexes 

 

(93)    
1

( , | ) , | ,            for all 
n

n
m m

k

G i j r G i j k r m


   

 

where n is the number of time intervals for which the local optimization has been 

performed.  
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In fig.9 we show the value of the 3G index together with the 3G index associated with the 

constant U, showing considerable agreement between the two. 

 

 

VII. Year Pairs Analysis 

 

In our original analysis discussed in section V we have taken simultaneously into account all 

of the available data for the period 1950-2010. In section VI we have used part of the data 

in order to determine each of the locally optimal utility functions, but then we have applied 

each of those utility functions to the whole time interval. We will now look at the data in a 

different way. We select one time interval, say rt as the reference time interval. For each 

time interval it we will determine two sets of function parameter vectors ( , )o o

ir ira c and ( , )o o

ri ria c

each of which minimizes the error function  
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* *
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1 1
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   
                  

   
 i ra c p a c p a c  

 

subject to the constraint, in the case of the first set, that the actual and optimal quantity 

vectors are exactly equal for time interval rt , and for the second set that the corresponding 

vectors are exactly equal for time interval it . It should be noted that in the case of only a 

pair of time intervals it may be possible to find algebraically a pair of parameter vectors such 

that 

 

(95)      ( , , , ) 0S i r a c  

 

However, we will use the same gradient technique used in the general case, so as to 

maintain the general consistency of methodology. 

 

We can then define the optimal time interval pair G3 Index as 

 

(96)   3 | ( , ,0.5 | , ) ( , ,0.5 | , )pG i r I I o o o o

i r ir ir i r ri rip p a c p p a c  

 

Note that the above can also be written as 

 

(97)  

* *

3 * *
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It should be noted a formal analogy with the Fisher standard index. The key difference is 

that instead of using the “theoretical budget” associated with the quantities actually 

purchased at the appropriate time intervals, the index uses the optimal budgets associated 

with the predetermined value of the utility function, evaluated at the appropriate price 
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vector. Both the Fisher standard index and the 
3 ( | )pG i r defined above have the 

characteristic that only the data for the two specified time intervals are used, without any 

reference to any intervening time intervals.  

 

 

In fig.10 we show three indexes, all evaluated at the utility value of 0.5: the 3G  index defined in 

section IV, the
 3( ,1950 |10)G i , already shown in Fig.9 and the above defined 3 ( | )pG i r  . All 

three indexes are in very good agreement. The important fact to note here is that while the first 

two indexes were evaluated on the basis of the full knowledge of the whole information in the 

1950-2010 period, each point of the last index was evaluated using only the information about 

the two time period in question. In other words, in our methodology, by using the 3 ( | )pG i r  

index defined above it is possible to evaluate a realistic price index for any two time 

intervals, without any knowledge of any intervening data, no matter how distant the two 

time intervals are. We believe that this demonstrates quite clearly the “robustness” of the 

approach that we have been discussing. 

 

 

VIII. Conclusions 

 

We believe that both  the Fisher standard index and the Fisher chain index methodologies 

suffer from very disturbing anomalies and lack any theoretical underpinning. Approaches 
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based on underlying utility functions have been discussed extensively in the theoretical 

literature, but appear to have had limited applications in actual practice. There are probably 

two basic reasons for the situation, namely: 

 

 there is often a reluctance to make apparently “arbitrary” assumptions about the 

general form of the utility function; 

 the computational complexity of “fitting” a large set of parameters may have been 

considered ”impractical”. 

 

We believe that the first objection is not a valid one. The purpose of “models” is to allow us 

to derive useful criteria for determining a course of action. The “validity” of such models 

needs to be judged only by their usefulness (or lack thereof). There may have been some 

validity to the second objection before digital computers, but certainly not now. 

 

The approach that we have presented is characterized by an underlying theoretical 

foundation that, once accepted, leads in a congruent way to the determination of the value 

of the indexes. Such indexes meet certain important requirements, namely they satisfy the 

transitivity, reciprocity and identity properties. Furthermore, the approach shows 

considerable robustness in the presence of drastic price changes. The approach allows for a 

variety of choices in the selection of specific indexes. This might be viewed as a drawback. 

We believe instead that this “embarrassment of riches” points to the fact that it is wishful 

thinking to believe that a “unique” characterization of the value of money may be found 

that is valid for any study of the issue. Furthermore, it suggests that attempts to characterize 

the value of money with high precision are probably misguided. 

 

 

 

 

If you have any comments please email to: cesare@neosophist.us  

mailto:cesare@neosophist.us
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